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1 Introduction

The techniques described in this book are aimed at investigation of the prop-
erties of crystal with a spatial resolution that provides the view into the unit
cell of the crystal. For this purpose, high-energy electrons are preferable,
among all the different kinds of radiation that could be used. First, electrons
possess a charge, and a beam of electrons can be focused in an inhomogeneous
magnetic field, which allows the construction of an electromagnetic focusing
lens. Among charged particles, electrons (and also positrons, but these are
not useful here) possess the smallest mass, which minimizes the structural
damage that they cause in the specimen. In the transmission electron mi-
croscope (TEM), electrons are accelerated to a few hundreds of keV. The de
Broglie wavelength of the electrons is of the order of only a few picometers,
and the point resolution of modern TEMs lies in the 0.1 nm range. In ad-
dition to the good spatial resolution, the strong interaction of the electrons
with matter allows the interaction volume to be extremely small. One single
column of only a few atoms is sufficient to determine the positions and, in
principle, also the types of the atoms from the scattered electron wave.

The interaction of the electron beam with the specimen provides many
channels of information that can be used for compositional analysis. First,
the inelastic scattering of electrons can be used for energy-dispersive X-ray
analysis (EDX), electron energy loss spectroscopy (EELS) and energy-filtered
TEM (EFTEM) [1]. The spatial resolution, of the order of a few nanometers,
is generally not sufficient to measure the composition of nanostructures with
good accuracy. As an alternative, high-resolution TEM (HRTEM) can be
utilized in combination with appropriate image evaluation techniques, where
a resolution of the order of 0.2 nm can be achieved.

“Chemical lattice imaging” was introduced by Ourmazd and coworkers
[2]; This allowed the chemical analysis of AlxGa1−xAs heterostructures on an
atomic scale. Another example of an evaluation method related to HRTEM
is the QUANTITEM (quantitative analysis of information from transmis-
sion electron micrographs) procedure which yields the projected potential of
the samples for crystals such as Si and Ge when only two Bloch waves are
strongly excited [3, 4, 5]. An alternative method, by Stenkamp and Jäger [6],
uses systematic variations of the image contrast pattern to obtain the local
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2 1 Introduction

composition of SiGe alloys for certain ranges of objective lens defocus ∆f

and specimen thickness t by measuring local Fourier coefficients.
This book focuses on two methods to quantify the information contained

in HRTEM images that are particularly useful for the investigation of semi-
conductor heteroepitaxial layers, where the strain state and the composition
on an atomic scale are of interest: strain state analysis, and composition
evaluation by lattice fringe analysis (CELFA).

1.1 Strain State Analysis [7, 8, 9, 10]

The basis of one possible approach to the problem of determining strain and
composition on an atomic scale is the measurement of local lattice param-
eters, i.e. the measurement of distances between adjacent atomic columns.
This approach is based principally on an important result of channeling the-
ory: presupposing an electron beam parallel to a zone axis of the specimen,
Van Dyck et al. showed [11] that the positions of the atomic columns are
given by the local intensity maxima of the electron wave function at the
object exit surface. If the objective lens introduces only radially symmetric
aberrations, this relation holds even in the image plane for perfect-crystal
specimens. Nevertheless, the objective lens aberrations give rise to delocal-
ization. The information content of each point of the wave function at the
object exit surface is spread over an area in the image plane whose size de-
pends on the lens aberrations and defocus. Consequently, sharp interfaces
appear blurred in the image. These effects can be minimized by using the
proper defocus. Although errors have to be expected close to chemical tran-
sitions in the specimen and in regions where the specimen thickness changes
rapidly, the positions of maximum image intensity are well suited for the
measurement of local lattice parameter variations and of displacements of
atomic columns with good accuracy. For this purpose, only a sufficiently con-
stant relationship needs to be assumed between the positions of the atomic
columns and the positions of the intensity maxima, whereas the relationship
itself does not need to be known at all.

The impact of objective lens aberrations can be avoided by the recon-
struction of the aberration-free exit wave function, which can be achieved by
two different approaches. In one of these approaches, a Möllenstedt biprism
is inserted close to the first intermediate image plane to perform off-axis elec-
tron holography [12, 13]. In the other approach, a series of HRTEM images
taken at systematically varied defocus values is used in the focal-variation
reconstruction method published by Coene et al. [14].

The local composition can be extracted from a single HRTEM image
or, more accurately, from the amplitude of the reconstructed electron exit
wave function, if the relationship between the composition and the lattice
parameter is known. For many compound semiconductors, e.g. InxGa1−xAs
and CdxZn1−xSe, Vegard’s law,
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aAxB1−xC = aBC + x(aAC − aBC) , (1.1)

can be applied; here the lattice parameter and the composition are linearly
correlated. If a mismatch exists between the lattice parameters of the sub-
strate and the epilayer, the distortion of the unit cells in the epilayer must
be taken into account. The tetragonal distortion can be easily calculated for
coherently strained two-dimensional layers below the critical thickness [15]
for plastic relaxation by misfit dislocations.

Measurement of local lattice parameters was applied by Bierwolf et al.
[16] and Jouneau et al. [17] to investigate the strain distribution of thin
epitaxial layers. Robertson et al. [18] used Fourier-filtered HRTEM images
to measure the spacings and cumulative deviations of lattice fringes. Hÿtch
et al. [19, 20, 21] used a Fourier filtering technique to derive the geometric
local phase of reflections in the Fourier-transformed image (diffractogram).

The situation becomes more difficult for three-dimensional growth modes.
Deviations from a tetragonal distortion occur close to the surface owing to the
elastic relaxation of the strained lattice. The finite-element method (FEM)
was first applied to compute the strain distribution in nanoscale islands in the
SiGe/Si(001) by Christiansen et al. [22] . A complete relaxation of the misfit
strain close to the island surface was obtained; this is regarded as the major
driving force for the island growth. Therefore, an accurate knowledge of the
strain distribution is a necessary prerequisite for composition evaluation from
local lattice parameters in the case of epitaxial islands.

Another question to be addressed is the elastic relaxation of strained
structures due to the small thickness of an HRTEM specimen (typically 20
nm), which can significantly modify the tetragonal distortion, depending on
the local specimen thickness and the dimensions of the strained structure. The
specimen thickness must be accurately measured in the region of interest of
the HRTEM image that is being analyzed. A further important step in the
quantification is the calculation of the elastic relaxation as a function of
the thickness of the TEM specimen and the layer morphology. Analytical
solutions to this problem for simple layer morphologies have been presented
by Treacy et al. [23]. For more complicated morphologies, FEM simulations
can be applied [24].

1.2 CELFA [7, 25, 26, 27, 28]

Owing to the modification of local lattice parameters by the local specimen
thickness and by elastic strain relaxation in islands, a different and less elab-
orate approach to composition determination is desirable. In this book, an
alternative method is described that exploits chemically sensitive reflections
such as the {002} reflections available in sphalerite-type crystals. This type
of reflection provides an amplitude that depends strongly on the crystal com-
position but often is rather small, as in InxGa1−xAs and CdxZn1−xSe, for
example.
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Single-beam dark-field imaging with a chemically sensitive reflection is
conventionally used to display variations of the chemical composition quali-
tatively. Since the local image intensity is proportional to the square of the
amplitude of the chemically sensitive reflection, quantitative data can be ex-
tracted, in principle. However, several problems exist. The signal-to-noise ra-
tio is typically small, owing to the small amplitude of the chemically sensitive
reflection and to inelastic scattering. Another significant disadvantage may
be explained as follows. The structure amplitude of a chemically sensitive re-
flection depends linearly on the elemental concentration x in a semiconductor
AxB1−xC. Depending on the atomic scattering factors of the atoms involved,
the sign of the structure amplitude may change at a certain concentration
x0. As a consequence, the amplitudes of the chemically sensitive beam are
similar at values of x equal to x0 ± δx whereas the phases differ by π. It is a
disadvantage of the single-beam dark-field imaging technique that the phase
of the beam is lost, but is essential to resolve the ambiguity described above.

The CELFA technique leads to a significantly improved signal-to-noise ra-
tio and recovers the phase information contained in the chemically sensitive
beam. The technique exploits a two- or three-beam interference of the chem-
ically sensitive beam with the undiffracted beam. A three-beam condition
using an additional, third reflection can be used to obtain information about
the local specimen thickness. An off-axis imaging condition is used to enlarge
the extinction distance, which minimizes the influence of specimen thickness
variations. A particularly elegant way to obtain the amplitude and phase of
the chemically sensitive beam, as well as the local specimen thickness, is off-
axis electron holography, where the chemically sensitive reflection interferes
with a reference beam that is spatially homogeneous. The specimen thickness
is evaluated from the phase of the central beam of the centered sideband of
the electron hologram.

The methods described above have been applied to a variety of material
systems, including InxGa1−xAs [7, 24, 29, 30, 31, 32, 33, 34], CdxZn1−xSe
[7, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52],
AlxGa1−xAs [25, 53, 54], AlxGa1−xN [55, 56] and InxGa1−xN [57, 58, 59, 60].
A discussion of all these applications clearly goes beyond the scope of this
book. Therefore, the presentation of applications will be restricted to in-
vestigations of InxGa1−xAs Stranski-Krastanov (SK) layers and composition
determination of AlxGa1−xAs / GaAs superlattices by off-axis electron holog-
raphy.

1.3 Organization of the Book

The present book is organized in the following way. The first part provides
the theoretical fundamentals of transmission electron microscopy needed in
the second part, which focuses on a description of strain state analysis and on
the composition evaluation by lattice fringe analysis techniques. In the third
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part, we describe the application of these techniques to the investigation
of low-dimensional semiconductor heterostructures such as InxGa1−xAs SK
layers.

In Part I of this book, we describe the electron wave on its way from the
specimen surface to the image. Chapter 2 starts with the interaction of the
electron wave with a crystalline specimen. First, we treat the scattering by a
single atom in Sect. 2.1. Section 2.2 describes the effect of electron diffraction
in the kinematical approximation, which is valid for crystals with a thickness
of only a few nanometers in the direction of the electron beam. More realistic
specimen thicknesses are treated in Sect. 2.3 within the framework of the
Bloch wave approach. Finally, channeling theory is used in Sect. 2.4 to show
that the positions of maximum intensity of the wave function at the object
exit surface correspond to the positions of atomic columns, presupposing an
exact zone axis orientation of the specimen.

Chapter 3 is concerned with the intensity pattern observed in the image
plane. It starts with the fictitious assumption of an ideal microscope and then
allows for spherical aberration and defocus in Sect. 3.1. Effects of incoherence
such as fluctuations of the high tension or objective lens current are treated
in Sect. 3.2. At the end of Chap. 3, two approaches are described in Sect. 3.3
that allow the reconstruction of the wave function at the object exit surface:
the focal-variation technique and off-axis electron holography.

Part II deals with the methods that have been developed for digital image
analysis. The first procedure, discussed in Chap. 4, is strain state analysis.
Section 4.1 outlines the measurement of the displacements and spacings of
lattice positions. A knowledge of the local specimen thickness is an important
prerequisite because the tetragonal distortion in a thin TEM specimen is
reduced in comparison with a bulk sample. Section 4.2 outlines a procedure
to measure the thickness, based upon QUANTITEM. After that, Sect. 4.3
focuses on the determination of the elastic relaxation of a thin specimen by
FEM simulations.

A rather detailed description of the CELFA technique is presented in
Chap. 5. The basic ideas behind CELFA are introduced in Sect. 5.1. Sub-
sequently, Sect. 5.2 gives a theoretical treatment of the technique. Practical
considerations follow in Sect. 5.3, which is concerned with the actual proce-
dures for the measurement of amplitudes and phases of reflections, as well as
with the errors in the evaluated composition due to objective lens aberrations
and specimen thickness uncertainties. The effect of strain is addressed in Sect.
5.4 and, finally, the impact of a nonrandom distribution of atom types that
share the same crystal sublattice is discussed in Sect. 5.5.

Applications of the evaluation methods are given in Part III. Chapter 6
introduces the Stranski-Krastanov growth mode (Sect. 6.1) and gives a survey
of the present level of understanding of segregation effects in III-V ternary al-
loys (Sect. 6.2). Chapter 7 outlines the investigations of In0.6Ga0.4As SK lay-
ers. It shows how the application of strain state analysis and the CELFA tech-
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nique allows novel insights into the morphology of free-standing and capped
SK layers. The investigations reveal that effects such as strain-induced mi-
gration of Ga and In, segregation, and incorporation of migrating In into the
growing cap layer lead to a considerable morphological transformation of the
SK layer during overgrowth of GaAs.

The effect of segregation leads to interesting and surprising morphologies
of the wetting layer and islands as has been shown by the investigation of
nominally binary InAs quantum dots presented in Chap. 8. Here we have
found that the putative binary islands contained more than 50% Ga. An
investigation of the wetting layers revealed, in a very clear and unambiguous
manner, the existence of segregation. This observation is in contradiction
to the wide-spread assumption that segregation is based upon an exchange
reaction of In and Ga at the growth surface.

Chapter 9 makes the point that electron holography could be very use-
ful for measuring the composition of materials in cases where the specimen
thickness is of crucial importance in chemical analysis. Here we show that
the measurement of the local phase of the (000) beam of the centered side-
band, combined with the amplitude of the chemically sensitive (002) beam,
allows one to deduce both the specimen thickness and the composition, in
an iterative and self-consistent way. Although accurate values of the mean
inner potential are generally not available at present, the suggested method
leads to good accuracy in the measured composition. Here we describe the
application of the method to an AlAs/GaAs superlattice, where again the
effect of segregation is demonstrated and its efficiency is measured.
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2 Electron Diffraction

This chapter describes the elastic Coulomb interaction of an incident electron
wave with a crystalline specimen. We start with the scattering of the electron
wave function of the incident electrons by a single atom. The integral form
of the Schrödinger equation results in a recursive description of the scattered
electron wave function ΨS as a Born series. The scattered electron wave is
calculated in the first Born approximation, and we find that the atomic scat-
tering amplitude for electrons quickly decreases with increasing scattering an-
gle. The periodic arrangement of atoms in the crystalline specimen together
with electron scattering leads to electron diffraction. The structure ampli-
tude of the crystal unit cell is used to describe the diffraction of electrons
by a thin-foil specimen. This kinematical approximation reveals the origin
of the chemically sensitive beams that constitute the basis of composition
evaluation by the CELFA method. Dynamical effects of electron diffraction
are taken into account using the Bloch wave formalism. With respect to the
CELFA technique, we discuss the dependence of the beams on the specimen
thickness and show how this dependence can be influenced by varying the
excitation condition. Finally, we set out the basis of strain state analysis by
discussing the correlation between the atomic positions and the positions of
maximum image intensity that appear in the amplitude“image” of the wave
function at the exit surface of the object in the framework of channeling the-
ory. Further information about the topics discussed in this chapter may be
found in [1, 2, 3].

2.1 Single-Atom Electron Scattering

2.1.1 The Integral Form of the Schrödinger Equation

We start our brief outline of diffraction theory with the scattering of an elec-
tron by a single atom that is tightly bound in a crystal. We consider only the
case of elastic scattering, where momentum and energy are conserved. Owing
to the large difference between the masses of the electron and the crystal, the
energy transfer from the electron to the crystal is negligible and the electron
wavelength does not change in the scattering process. The problem can be
described by the stationary

A. Rosenauer (Ed.): Transmission Electron Microscopy of Semiconductor Nanostructures:
Analysis of Composition and Strain State, STMP 182, 13–32 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Schrödinger equation

∇2Ψ(r) +
8π2me

h2
(E + Φ(r)) Ψ(r) = 0 , (2.1)

where E and m are the relativistically corrected values of the accelerating
potential and of the mass of the incident electron, respectively, Φ(r) is the
Coulomb potential of the scattering atom, e is the elementary charge, and h
is Planck’s constant. Even in an electron microscope operating at only 100
keV, the electrons travel at over half the speed of light. It is thus clear that
relativistic corrections must be taken into account. The relativistic corrections
involved in (2.1) are

E = U

(
1 +

eU

2m0c2

)
,

m = m0

√(
1 +

h2

m2
0c2λ2

)
,

λ =
h√

2m0eU (1 + eU/2m0c2)
, (2.2)

where U is the accelerating voltage, λ the de Broglie wavelength, m0 the rest
mass of the incident electron and c the speed of light in vacuum. Equation
(2.1) can be interpreted as an inhomogeneous differential equation with an
inhomogeneity

f(r) := −8π2me

h2
Φ(r)Ψ(r) . (2.3)

Using the abbreviation

k′2 :=
2me

h2
E (2.4)

and defining the linear differential operator

L :=
[
∇2 + 4π2k′2

]
, (2.5)

we can obtain a Green’s function

G(r − r′) = − 1

4π

exp(−2πik′|r − r′|)
|r − r′| , (2.6)

which obeys

L G(r − r′) = δ(r − r′) , (2.7)

where δ is Dirac’s delta “function”1 (Sect. B.3). A solution of the inhomoge-
neous differential equation

1 Equation (2.7) can easily be proven using the relation ∇2(1/|r − r′|) = −4πδ(r−
r′).
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LΨ(r) = f(r) (2.8)

is given by

Ψ(r) = Ψ0(r) +

∫

Ω

G(r − r′)f(r′)d3r′ , (2.9)

where Ω is the scattering volume. Inserting G(r − r′) from (2.6), we finally
obtain

Ψ(r) = Ψ0(r) +
2πme

h2

∫

Ω

exp(−2πik′|r − r′|)
|r − r′| Φ(r′)Ψ(r′)d3r′ , (2.10)

where Ψ0(r) is a solution of the homogeneous differential equation (2.7). An
expression for this solution can be obtained from the condition that Ψ(r) =
Ψ0(r) for Φ(r) = 0. Thus, Ψ0(r) is the incident electron wave

Ψ0(r) = exp(−2πik0 · r) , (2.11)

with a wave vector k0.

2.1.2 The Atomic Scattering Amplitude for Electrons

Using (2.10), Ψ(r) can be expressed as a Born series

Ψ(r) =
∞∑

n=0

Ψn(r) , (2.12)

where Ψn(r) is obtained from the integral (2.10) by putting Ψ(r) = Ψn−1(r).
In the first Born approximation we obtain

Ψ1(r) = σ

∫

Ω

exp(−2πik′|r − r′|)
|r − r′| Φ(r′) exp(−2πik0r

′)d3r′ , (2.13)

where σ is the interaction constant, given by

σ =
2πme

h2
. (2.14)

In the following, we consider Ψ(r) only for |r′| ≪ |r| (the “asymptotic solu-
tion”), so that r − r′, k′ := k′r̂ and r are parallel (see Fig. 2.1). Thus the
approximation

|r− r′| = r − r′ · k′

k′
(2.15)

is valid and we obtain
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Fig. 2.1. Sketch showing an incident wave with wave vector k0, scattered by a
scattering center at r′, which acts as a source of a secondary spherical wavelet
Ψ1(r)

Ψ1(r) = σ exp(−2πik′r)

∫

Ω

exp(−2πi(k0 − k′) · r′)
|r− r′| Φ(r′)d3r′ . (2.16)

We now introduce the scattering vector u = −(k0 − k′) , which is related
to the scattering angle θ (see Fig. 2.1) by u = (2/λ) sin θ/2. Replacing |r−r′|
by r, we obtain:

Ψ(r,u) = exp(−2πik0 · r) +
exp(−2πik′r)

r
fe(u) , (2.17)

where fe(u) is the atomic scattering factor for electrons, given by

fe(u) = σ

∫

Ω

exp(2πiu · r′)Φ(r′)d3r′ . (2.18)

Note that fe(u) is also called the scattering length because it has dimensions
of length. It is proportional to the Fourier transform of Φ(r), denoted by
FΦ(r) (see Sect. B.1). Equation (2.18) is analogous to the X-ray scattering
factor

fX(u) =

∫

Ω

exp(2πiu · r′)n(r′)d3r′ , (2.19)

where n(r′) is the electron density distribution in the atom. Note that the
electron is scattered by the Coulomb potential of the electron shell and the
nucleus of the atom, whereas the X-ray scattering is due to the effect of the
incident photon forcing an oscillation of the “hit” electron, which thus emits
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a secondary wave. Poisson’s equation provides a relation between the charge
density of the electron shell and its contribution to the atomic potential.
Values of fX(u) are available in the literature for most elements. The Mott
formula

fe(u) =
2πme2

ǫ0h2

(Z − fX(u))

|u|2 , (2.20)

which is based on Poisson’s equation, gives a relation between fe(u) and
fX(u), where Z is the atomic number of the target atom and ǫ0 the permit-
tivity of a vacuum. Equation (2.20) has been used to compute fe(u) [4, 5].
A list of atomic scattering amplitudes fe(u) is provided in [5], and these are
also used in the EMS program package [6]. There, the fe(u) are given for
m = m0 in the parametric form

f ′
e(s) =

4∑

n=1

an exp(−bns2) , where s =
|u|
2

=
sin(θ/2)

λ
. (2.21)

Here an and bn are the parameters listed in [5], given in units of Å and Å2,
respectively. The relativistically corrected atomic scattering amplitudes are
given by

fe(u) =

√(
1 +

h2

m2
0c2λ2

)
f ′
e

( |u|
2

)
. (2.22)

Figure 2.2 diplays the atomic scattering amplitudes of Ga, In and As.
One can clearly see that fe(u) depends on the type of scattering atom. This
chemical sensitivity is the basis of the technique for compositional analysis
described in this book. Figure 2.2 also reveals that the scattering amplitude
decreases quickly with increasing scattering parameter |u|.

2.2 Kinematical Approximation

2.2.1 The Structure Amplitude

The scattered electron wave function ΨS(r,u) is given in the first Born ap-
proximation (see (2.17)) by

ΨS(r,u) =
exp(−2πik0r)

r
fe(u) . (2.23)

We now consider a unit cell of a crystal containing N atoms with atomic

scattering factors f
(i)
e at positions ri (i = 1, . . . , N) (Fig. 2.3). We substitute

r′ = r′′ + ri in (2.18) and obtain the structure amplitude (also called the
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Fig. 2.2. Atomic scattering amplitudes for In, Ga and As plotted versus the scat-
tering parameter |u|, calculated for an accelerating voltage of 200 kV

structure factor) of the unit cell by summing the atomic scattering factors of
all atoms in the unit cell according to

FS(u) =

N∑

i=1

σ

∫
Φ(i)(r′′) exp {2πiu · (r′′ + ri)}d3r′′ (2.24)

⇒ FS(u) =
N∑

i=1

f (i)
e (u) exp {2πi(u · ri)} . (2.25)

2.2.2 The Lattice Amplitude

The interaction of the scattered waves emanating from a periodic assembly
of unit cells leads to the effect of electron diffraction. Summing the structure
amplitudes of unit cells with their origins at positions rT = n1r1+n2r2+n3r3,
where n1,2,3 are integers and r1,2,3 the lattice translation vectors, we obtain

G(u) = FS(u)
∑

n1,2,3

exp {2πi[u · (n1r1 + n2r2 + n3r3)]} n1,2,3 ∈ N .

(2.26)

Figure 2.4 clearly reveals that the modulus |G(u)| is a peaked function, where
each peak corresponds to a diffracted beam. Peaks occur for scattering vectors
u that obey
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r

r''

i

0

unit cell

atom

Fig. 2.3. Sketch of a unit cell, with the definition of the vectors ri and r′′ used in
(2.24)

u · (n1r1 + n2r2 + n3r3) = n n ∈ N , (2.27)

which is fulfilled when u is a reciprocal-lattice vector ghkl with Miller indices
h, k, l, such as

ghkl = hg1 + kg2 + lg3 h, k, l ∈ N . (2.28)

The reciprocal-lattice base vectors g1,2,3 are defined by

gi =
rj × rk

ri · [rj × rk]
, (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} . (2.29)

We thus obtain for the vectors ghkl

ghkl · (n1r1 + n2r2 + n3r3) = hn1 + kn2 + ln3 , (2.30)

which proves that u = ghkl fulfills (2.27).

2.2.3 The Thin-Foil Specimen

To calculate the electron wave diffracted by a real specimen in the kine-
matical approximation, we consider a thin foil of thickness t. Summing the
contributions from all points of the exit surface of the thin foil, interfering
at a point P at a distance R from the surface as displayed in Fig. 2.5, we
obtain, for example from Fresnel’s zone construction method [1], the total
secondary wave corresponding to the diffraction vector ghkl as

ΨS(ghkl) = iλt
FS(ghkl)

VC
exp {−2πik0 ·R} , (2.31)
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Fig. 2.4. Graph visualizing the effect of diffraction described by the lattice ampli-
tude in (2.26). The function |G(u)| is plotted versus the scattering “vector” u, where
G(u) =

∑7
n=0 exp{2πiu(nr1)}, using a 1D lattice translation “vector” r1 = (1/3)

nm. Clearly, the modulus of G(u) contains peaks at positions u = 0, 3, 6, 9, . . . ,
where ur1 = m, m ∈ N. The positions u of the peaks correspond to the direc-
tions where constructive interference takes place, thus describing the propagation
directions of diffracted beams

P

R

t

k0

Fig. 2.5. An incident plane wave with wave vector k0 passing through a thin-foil
specimen. At the point P , the wave function is composed of the sum of scattered
waves from all points of the surface

where VC is the volume of the unit cell. In the kinematical approximation,
the amplitude of a diffracted beam ghkl increases linearly with the speci-
men thickness t. The dependence of the amplitude of the scattered wave
upon 1/r that is obtained for single-atom scattering in (2.23) has vanished
in (2.31). Note that if this approximation were valid, the the amplitude of
the diffracted wave would become equal to the amplitude of the incident
wave at tc = VC/(FS(ghkl)λ) (e.g. tc = 15 nm for g002 in GaAs), whereas the
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amplitude of the undiffracted beam would not change. This would violate en-
ergy conservation, and this consideration makes it clear that the kinematical
approximation is valid only for a specimen thickness t ≪ tc.

In electron microscopy, the beams that contribute to the image are se-
lected with the objective aperture, which is located in the back focal plane of
the objective lens. The intensity of an image that is obtained in such a way
that only the beam ghkl passes through the objective aperture, is given by

I(ghkl) = |ΨS(ghkl)|2 ∝ |FS(ghkl)|2 . (2.32)

Such a micrograph is called a single-beam bright-field (BF) image if ghkl = 0
and a single-beam dark-field (DF) image otherwise. If more than one beam
ghkl passes through the objective aperture, the electron waves of all beams
interfere in the image plane, and nonlinear imaging theory must be applied
to describe the intensity distribution.

Fig. 2.6. The nonprimitive unit cell of the sphalerite crystal structure. The prim-
itive basis vectors are r1 = (a/2)[110], r2 = (a/2)[101] and r3 = (a/2)[011], where
a is the lattice parameter. The basis contains two atoms of different type (metal
or nonmetal) at positions ri and ri + (1/4)a[111]. By convention, the origin is oc-
cupied by a metal atom. The reciprocal-lattice base vectors are g1 = a−1[1̄1̄1],
g2 = a−1[1̄11̄] and g3 = a−1[11̄1̄]

2.2.4 Chemical Sensitivity

We now use the results of the preceding paragraphs to discuss chemical sen-
sitivity in the kinematical approximation. Equation (2.31) shows that the
amplitude of ΨS(ghkl) is proportional to FS(ghkl). We therefore concentrate
on the discussion of the structure factor. Since the present book is concerned
with composition determination in sphalerite-type crystals (Fig. 2.6), we con-
sider the structure factor of a beam ghkl for a binary material AC, given by


